Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.12.20.572426

ABSTRACT

Wastewater-based surveillance (WBS) is an important epidemiological and public health tool for tracking pathogens across the scale of a building, neighbourhood, city, or region. WBS gained widespread adoption globally during the SARS-CoV-2 pandemic for estimating community infection levels by qPCR. Sequencing pathogen genes or genomes from wastewater adds information about pathogen genetic diversity which can be used to identify viral lineages (including variants of concern) that are circulating in a local population. Capturing the genetic diversity by WBS sequencing is not trivial, as wastewater samples often contain a diverse mixture of viral lineages with real mutations and sequencing errors, which must be deconvoluted computationally from short sequencing reads. In this study we assess nine different computational tools that have recently been developed to address this challenge. We simulated 100 wastewater sequence samples consisting of SARS-CoV-2 BA.1, BA.2, and Delta lineages, in various mixtures, as well as a Delta-Omicron recombinant and a synthetic "novel" lineage. Most tools performed well in identifying the true lineages present and estimating their relative abundances, and were generally robust to variation in sequencing depth and read length. While many tools identified lineages present down to 1% frequency, results were more reliable above a 5% threshold. The presence of an unknown synthetic lineage, which represents an unclassified SARS-CoV-2 lineage, increases the error in relative abundance estimates of other lineages, but the magnitude of this effect was small for most tools. The tools also varied in how they labelled novel synthetic lineages and recombinants. While our simulated dataset represents just one of many possible use cases for these methods, we hope it helps users understand potential sources of noise or bias in wastewater sequencing data and to appreciate the commonalities and differences across methods.


Subject(s)
Skull Base Neoplasms
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.10.20236943

ABSTRACT

ImportanceSARS-CoV-2 genomic variants impacts the overall sensitivity of COVID-19 diagnosis, leading to false-negative diagnosis and the continued spread of the virus. ObjectiveTo evaluate how nucleotide variability in target primer binding sites of the SARS-CoV-2 genomes may impact diagnosis using different recommended primer/probe sets, as well as to suggest the best primer/probes for diagnosis. DesignWe downloaded 105,118 public SARS-CoV-2 genomes from GISAID (Sept, 25th, 2020), removed genomes of apparent worst quality (genome length <29kb and/or >5% ambiguous bases) and missing metadata, and performed an analysis of complementarity for the 13 most used diagnostic primers/probe sets for RT-PCR detection. We calculated the N rate and % of genome recovery, with all primer/probe-sets considering viral origin and clade. Results: Our findings indicate that currently, the Paris_nCoV-IP2, -IP4 and WHO|E_Sarbeco primer/probe sets for COVID-19, to perform the best diagnostically worldwide, recovering >99.5% of the good quality SARS-CoV-2 genomes from GISAID, with no mismatches. The Chinese_CDC|2019-nCoV-NP primer/probe set, among the first to be designed during the pandemic, was the most susceptible to currently most abundant SARS-CoV-2 variants. Mismatches encompassing the binding sites for this set are more frequent in Clade-GR and are highly prevalent in over 30 countries globally, including Brazil and India, two of the hardest hit countries. Conclusions: Detection of SARS-CoV-2 in patients may be hampered by significant variability in parts of the viral genome that are targeted by some widely used primer sets. The geographic distribution of different viral clades indicates that continuous assessment of primer sets via sequencing-based surveillance and viral evolutionary analysis is critical to accurate diagnostics. This study highlights sequence variance in target regions that may reduce the efficiency of primer:target hybridization that in turn may lead to the undetected spread of the virus. As such, due to this variance, the Chinese_CDC|2019-nCoV-NP-set should be used with caution, or avoided, especially in countries with high prevalence of the GR clade. Key Points QuestionHow variable are the binding-sites of primers/probes used for COVID-19 diagnosis? FindingsWe investigated nucleotide variations in primer-binding sites used for COVID-19 diagnosis, in 93,143 SARS-CoV-2 genomes, and found primer sets targeting regions of increasingly nucleotide variance over time, such as the Chinese_CDC|2019-nCoV-NP. The frequency of these variations is higher in Clade-GR whose frequency is increasing worldwide. Paris_nCoV-IP2, IP4 and WHO|E_Sarbeco performed best. MeaningWe suggest the use of some sets to be halted and reinforce the importance of a continuous surveillance of SARS-CoV-2 variations to prompt the use of the best primers.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL